翻訳と辞書
Words near each other
・ Wełdkowo
・ Wełdkówko
・ Wełecz
・ Wełmice
・ Wełmin
・ Wełna, Greater Poland Voivodeship
・ Wełna, Kuyavian-Pomeranian Voivodeship
・ Wełnica, Greater Poland Voivodeship
・ Wełnica, West Pomeranian Voivodeship
・ Wełnin
・ Wełnowiec-Józefowiec
・ Wełpin
・ Wełtyń
・ Weōdmōnaþ
・ Weśrednik
Weyl–von Neumann theorem
・ Weyl−Lewis−Papapetrou coordinates
・ Weyman
・ Weyman Airpark
・ Weyman Bouchery
・ Weymann 66
・ Weymann Fabric Bodies
・ Weymann W-1
・ Weymer Creek Provincial Park
・ Weymer's crow
・ Weymeria
・ Weymontachie Airport
・ Weymouth
・ Weymouth (schooner)
・ Weymouth (unincorporated community), New Jersey


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Weyl–von Neumann theorem : ウィキペディア英語版
Weyl–von Neumann theorem
In mathematics, the Weyl–von Neumann theorem is a result in operator theory due to Hermann Weyl and John von Neumann. It states that, after the addition of a compact operator () or Hilbert–Schmidt operator () of arbitrarily small norm, a bounded self-adjoint operator or unitary operator on a Hilbert space is conjugate by a unitary operator to a diagonal operator. The results are subsumed in later generalizations for bounded normal operators due to David Berg (1971, compact perturbation) and Dan-Virgil Voiculescu (1979, Hilbert–Schmidt perturbation). The theorem and its generalizations were one of the starting points of operator K-homology, developed first by Larry Brown, Ronald Douglas and Peter Fillmore and, in greater generality, by Gennadi Kasparov.
In 1958 Kuroda showed that the Weyl–von Neumann theorem is also true if the Hilbert–Schmidt class is replaced by any Schatten class ''S''''p'' with ''p'' ≠ 1. For ''S''1, the trace-class operators, the situation is quite different. The Kato–Rosenblum theorem, proved in 1957 using scattering theory, states that if two bounded self-adjoint operators differ by a trace-class operator, then their absolutely continuous parts are unitarily equivalent. In particular if a self-adjoint operator has absolutely continuous spectrum, no perturbation of it by a trace-class operator can be unitarily equivalent to a diagonal operator.
==References==

*
*
*
*
*
*
*
*


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Weyl–von Neumann theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.